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Lecture 2: Jacobi last multiplier and its properties

The Jacobi last multiplier and its connection to first integrals
and Lagrangians.

The Jacobi last multiplier and its connection to Lie
symmetries .

Nonlocal symmetries as hidden symmetries: the role of Jacobi
last multiplier.



Lagrange vindicated

In the Avertissement to his ”Méchanique Analitique” (1788)
Joseph-Louis Lagrange (1736-1813) wrote:

The methods that I explain in it require neither constructions
nor geometrical or mechanical arguments, but only the algebraic
operations inherent to a regular and uniform process. Those who
love Analysis will, with joy, see mechanics become a new branch of
it and will be grateful to me for thus having extended its field. (tr.
by J.R. Maddox:)

It is a joke, isn’t it??!!
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Jacobi last multiplier
(Jacobi, 1842-45)

Af =
n∑

i=1

ai
∂f

∂xi
= 0 (?)

dx1
a1

=
dx2
a2

= . . . =
dxn
an

. (??)

∂(f , ω1, ω2, . . . , ωn−1)

∂(x1, x2, . . . , xn)
= MAf

ωi , (i = 1, . . . , n − 1) solutions of (?) ie first integrals of (??)

n∑
i=1

∂(Mai )

∂xi
= 0 ⇔ d log(M)

dt
= −

n∑
i=1

∂ai
∂xi

IMPORTANT PROPERTY:

M1

M2
= First Integral
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Enter Lie

[Lie, 1874]
dx1
a1

=
dx2
a2

= . . . =
dxn
an

. (??)

If there exist n − 1 symmetries of (??), say

Γi = ξij∂xj , i = 1, n − 1

then JLM is given by M = ∆−1, provided that ∆ 6= 0, where

∆ = det


a1 · · · an
ξ1,1 ξ1,n

...
...

ξn−1,1 · · · ξn−1,n


Corollary: if ∃ M=const, then ∆ is a first integral.



How many Lagrangians does one know?
There is a link between a Jacobi Last Multiplier M and a
Lagrangian L [Jacobi, 1842-45], [also in Whittaker, 1904].

Jacobi’s Lectures on Dynamics (1884) are available in English:
tr. by K. Balagangadharan, ed. by Biswarup Banerjee,
Hindustan Book Agency (2009), available through AMS

For a second-order ODE the link is:

∂2L

∂q̇2
= M. (1)

Consequently a knowledge of the multipliers of a system enables
one to construct a number of Lagrangians of that system.

How many??

N.B.: For a single ODE of order 2n the link is M1/n =
∂2L

∂
(
q(n)

)2
(Jacobi, J. Reine Angew. Math. 29 (1845) p.364)
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A very simple example
Let us consider the one-dimensional free particle ẍ = 0, i.e.:

ẋ1 = x2

ẋ2 = 0

Lie symmetry algebra sl(3,R):

X1 = xt∂t + x2∂x , X2 = x∂t , X3 = t2∂t + xt∂x , X4 = x∂x ,

X5 = t∂t , X6 = ∂t , X7 = t∂x , X8 = ∂x .

JLMij = 1/∆ij , Xi and Xj

For example JLM48 = −1/ẋ by means of X4 and X8 such that:

∆48 = det

 1 x2 0
0 x1 x2
0 1 0

 = −x2 ≡ −ẋ .
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ẋ1 = x2
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Ten Lagrangians
Ten different JLM and consequently as many Lagrangians:

M13 = − 1

(tẋ − x)3
⇒ L1,3 = − 1

2t2(tẋ − x)
+
dg

dt
(t, x)

M15 = − 1

ẋ(tẋ − x)2
⇒ L1,5 =

ẋ

x2
(log(tẋ − x)− log(ẋ))

M16 =
1

ẋ2(tẋ − x)
⇒ L1,6 =

(
tẋ

x2
− 1

x

)
(log(ẋ)− log(tẋ − x))

M17 = − 1

(tẋ − x)2
⇒ L1,7 = − 1

t2
log(tẋ − x)

M18 =
1

ẋ(tẋ − x)
⇒ L1,8 = − ẋ

x
log(ẋ)−

(
1

t
− ẋ

x

)
log(tẋ − x)

+
1

t
(1 + log(x))



M62 =
1

ẋ3
⇒ L6,2 =

1

2ẋ

M28 =
1

ẋ2
⇒ L2,8 = − log(ẋ)

M38 =
1

tẋ − x
⇒ L3,8 =

(
ẋ

t
− x

t2

)
(log(tẋ − x)− 1)

M48 = −1

ẋ
⇒ L4,8 = ẋ(1− log(ẋ))

M87 = 1 ⇒

L8,7 = 1
2 ẋ

2

FINALLY, THE TRUE LAGRANGIAN
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Lagrangians for biological models
About 45 years ago a paper was published [Trubatch & Franco, J.
Theor. Biol. 48 (1974)] in which an explicit algorithm for
constructing Lagrangians (L) of biological systems (many
examples) was presented.

8 years later an analogous paper (with fewer examples) was
published [Paine, Bull. Math. Biol. 44 (1982)]: no ref. to T&F.
Then 16 year later a third paper was published (with one example),
[Fernández-Núñez, Int. J. Theor. Phys. 37 (1998)]: no ref. to
either T&Franco or P.
Those authors were all unaware of the 170 years old properties of
the Jacobi Last Multiplier (JLM) that yield linear Lagrangians of
systems of two first-order ODEs and nonlinear Lagrangian of any
of the single second-order ODE that can be derived from them,
and more:

For a single ODE of order 2n the link is JLM1/n =
∂2L

∂
(
x (n)

)2
[Jacobi, J. Reine Angew. Math. 29 (1845)]
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Lagrangians for biological systems with JLM
Given the following system:

u̇1 = φ1(t, u1, u2)

u̇2 = φ2(t, u1, u2) (2)

It was proven in [MCN & Tamizhmani, 2012] that if a Jacobi Last
Multiplier M is determined for system (2) then its Lagrangian is:

L = u̇2

∫
Mdu1 − u̇1

∫
Mdu2 + V (t, u1, u2).

If a Noether symmetry

Γ = ξ(t, u1, u2)∂t + η1(t, u1, u2)∂u1 + η2(t, u1, u2)∂u2 (3)

exists for the Lagrangian L then a first integral of system (2) is

−ξL− ∂L

∂u̇1
(η1 − ξu̇1)− ∂L

∂u̇2
(η2 − ξu̇2) + G (t, u1, u2). (4)
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Gompertz model

ẇ1 = w1

(
A log

(
w1

m1

)
+ Bw2

)
ẇ2 = w2

(
a log

(
w2

m2

)
+ bw1

)
. (5)

In order to simplify system (5) we introduce the change of
variables

w1 = m1 exp(r1), w2 = m2 exp(r2) (6)

and then system (5) becomes

ṙ1 = m2B exp(r2) + Ar1

ṙ2 = m1b exp(r1) + ar2. (7)

It is easy to derive a Jacobi Last Multiplier for this system, i.e.

d

dt
log
(
M[r ]

)
= −(a + A) =⇒ M[r ] = exp[−(a + A)t] (8)



We can transform system (7) into an equivalent second-order ODE
by eliminating, say, r2. In fact from the second equation in (7) one
gets

r2 = log

(
ṙ1 − Ar1
Bm2

)
, (9)

and the equivalent second-order equation in r2 is

r̈1 =
(
bm1 exp(r1) + a log

(
ṙ1−Ar1
Bm2

))
(ṙ1 − Ar1) + Aṙ1.

A Jacobi Last Multiplier for this equation can be obtained by
calculating the Jacobian of the transformation between (r1, r2) and
(r1, ṙ1), i.e.

M1 = M[r ]
∂(r1, r2)

∂(r1, ṙ1)
= exp[−(a + A)t]

1

ṙ1 − Ar1
. (10)

Then a Lagrangian can be easily obtained by a double integration,
i.e.

L1 = exp[−(a + A)t]
(

(ṙ1 − Ar1) log(ṙ1 − Ar1) + m1b exp(r1)

−ar1 log(Bm2)− ar1
)

+ Ḟ (t, r1).



Vito Volterra’s last paper
Calculus of Variations and the Logistic Curve, Human Biology, 1939

Vito Volterra (1860-1940) wrote
“I have been able to show that
the equations of the struggle for
existence depend on a question
of Calculus of Variations”

“In order to obtain this result, I have replaced the notion of
population by that of quantity of life. In this manner I have also
obtained some results by which dynamics is brought into relation
to problems of the struggle for existence.” The quantity of life X
and the population N of a species are connected by the relation

N =
dX

dt
. (11)

Thus Volterra takes a system of first-order equations and transform
it into a system of second-order equations.
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Volterra-Verhulst-Pearl equation
One of the equations Volterra considered is the Verhulst-Pearl
equation

dN

dt
= N(ε− λN) (12)

that through (11) becomes

d2X

dt2
=

dX

dt

(
ε− λdX

dt

)
. (13)

Equation (13) admits an eight-dimensional Lie symmetry algebra
generated by the following operators:
Γ1 = exp(λX − εt)∂t , Γ2 = exp(λX )

(
∂t + ε

λ ∂X
)
,

Γ3 = exp(−λX + εt)∂X , Γ4 = exp(−λX )∂X ,
Γ5 = exp(εt)

(
λ
ε ∂t + ∂X

)
, Γ6 = ∂X , Γ7 = exp(−εt)∂t , Γ8 = ∂t .

Therefore the equation is linearizable

y = exp(−εt), u = 1
λ exp(λX − εt)⇒ d2u

dy2
= 0
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Ten Lagrangians
JLM = ∂2L

∂Ẋ 2
⇔ 4

Lag14 = − exp(εt)
(
1
λ log

(
dX
dt

)
+ X

)
,

Lag15 = exp(−λX )
(
1
ε
dX
dt log

(
dX
dt

)
+ 1

ε log
(
λdX

dt − ε
)

dX
dt + 1

λ

)
,

Lag17 = − 1

2λdX
dt

exp(2εt − λX ),

Lag18 = 1
ε2

exp(εt − λX )
(
λdX

dt − ε
) (

log
(
dX
dt

)
− ε log

(
λdX

dt − ε
))
,

Lag23 = − 1
λ exp(−εX )

(
log
(
ε− λdX

dt

)
+ λX

)
,

Lag25 = ε exp(−εt−λX )

2λ(εt−λdX
dt )

,

Lag34 = − 1
2ε exp(−εt + 2λX )

(
dX
dt

)2
,

Lag36 = 1
λ2

exp(−εt + λX )
((
λdX

dt − ε
)

log
(
ε− λdX

dt

)
− λdX

dt

)
,

Lag37 = 1
ε exp(λX )

(
dX
dt log

(
dX
dt

)
− dX

dt + ε
λ

)
,

Lag68 = 1
ε
dX
dt log

(
dX
dt

)
+ 1

ελ

(
ε− λdX

dt

)
log
(
ε− λdX

dt

)
+ X

Lag17, Lag25, Lag34 admit five Noether symmetries
Lag68 (Volterra’s Lagrangian) admits two Noether symmetries only.
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Conservation laws

For example the Lagrangian Lag34 yields the following five Noether
symmetries and corresponding first integrals of equation (13)

Γ3 =⇒ Int3 = exp(λX )

(
−ε+ λ

dX

dt

)
,

Γ4 =⇒ Int4 = exp(−εt + λX )
dX

dt
,

Γ5 =⇒ Int5 = exp(2λX )

(
ε− λdX

dt

)2

,

Γ6 + 2
λ

ε
Γ8 =⇒ Int6 = exp(−εt + 2λX )

dX

dt

(
ε− λdX

dt

)
,

Γ7 =⇒ Int7 = exp(−2εt + 2λX )

(
dX

dt

)2

.

[MCN and K.M.Tamizhmani, J. Nonlinear Math. Phys. 19 (2012)]



How do we (physically) eliminate 9 out of 10??

?

They differ by the number of Noether symmetries that they
admit.

The physical Lagrangian admits the maximum number of
Noether symmetries, i.e. FIVE.
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