FANTASTIC SYMMETRIES AND WHERE TO FIND THEM

Maria Clara Nucci

University of Perugia \& INFN-Perugia, Italy
XXI ${ }^{\text {st }}$ International Conference
Geometry, Integrability and Quantization June 3-8, 2019, Varna, Bulgaria

Lecture 2: Jacobi last multiplier and its properties

- The Jacobi last multiplier and its connection to first integrals and Lagrangians.
- The Jacobi last multiplier and its connection to Lie symmetries.
- Nonlocal symmetries as hidden symmetries: the role of Jacobi last multiplier.

Lagrange vindicated

In the Avertissement to his "Méchanique Analitique" (1788) Joseph-Louis Lagrange (1736-1813) wrote:
The methods that I explain in it require neither constructions nor geometrical or mechanical arguments, but only the algebraic operations inherent to a regular and uniform process. Those who love Analysis will, with joy, see mechanics become a new branch of it and will be grateful to me for thus having extended its field. (tr. by J.R. Maddox:)

Lagrange vindicated

In the Avertissement to his "Méchanique Analitique" (1788) Joseph-Louis Lagrange (1736-1813) wrote:
The methods that I explain in it require neither constructions nor geometrical or mechanical arguments, but only the algebraic operations inherent to a regular and uniform process. Those who love Analysis will, with joy, see mechanics become a new branch of it and will be grateful to me for thus having extended its field. (tr. by J.R. Maddox:)

Jacobi last multiplier

(Jacobi, 1842-45)

$$
\begin{gather*}
A f=\sum_{i=1}^{n} a_{i} \frac{\partial f}{\partial x_{i}}=0 \\
\frac{\mathrm{~d} x_{1}}{a_{1}}=\frac{\mathrm{d} x_{2}}{a_{2}}=\ldots=\frac{\mathrm{d} x_{n}}{a_{n}} . \\
\frac{\partial\left(f, \omega_{1}, \omega_{2}, \ldots, \omega_{n-1}\right)}{\partial\left(x_{1}, x_{2}, \ldots, x_{n}\right)}=M A f
\end{gather*}
$$

$\omega_{i},(i=1, \ldots, n-1)$ solutions of (\star) ie first integrals of $(\star \star)$

$$
\sum_{i=1}^{n} \frac{\partial\left(M a_{i}\right)}{\partial x_{i}}=0 \Leftrightarrow \frac{\mathrm{~d} \log (M)}{\mathrm{d} t}=-\sum_{i=1}^{n} \frac{\partial a_{i}}{\partial x_{i}}
$$

Jacobi last multiplier

(Jacobi, 1842-45)

$$
\begin{gather*}
A f=\sum_{i=1}^{n} a_{i} \frac{\partial f}{\partial x_{i}}=0 \\
\frac{\mathrm{~d} x_{1}}{a_{1}}=\frac{\mathrm{d} x_{2}}{a_{2}}=\ldots=\frac{\mathrm{d} x_{n}}{a_{n}} . \\
\frac{\partial\left(f, \omega_{1}, \omega_{2}, \ldots, \omega_{n-1}\right)}{\partial\left(x_{1}, x_{2}, \ldots, x_{n}\right)}=M A f
\end{gather*}
$$

$\omega_{i},(i=1, \ldots, n-1)$ solutions of (\star) ie first integrals of $(\star \star)$

$$
\sum_{i=1}^{n} \frac{\partial\left(M a_{i}\right)}{\partial x_{i}}=0 \Leftrightarrow \frac{\mathrm{~d} \log (M)}{\mathrm{d} t}=-\sum_{i=1}^{n} \frac{\partial a_{i}}{\partial x_{i}}
$$

IMPORTANT PROPERTY:

$$
\frac{M_{1}}{M_{2}}=\text { First Integral }
$$

Enter Lie

[Lie, 1874]

$$
\frac{\mathrm{d} x_{1}}{a_{1}}=\frac{\mathrm{d} x_{2}}{\mathrm{a}_{2}}=\ldots=\frac{\mathrm{d} x_{n}}{a_{n}} . \quad(\star \star)
$$

If there exist $n-1$ symmetries of $(\star \star)$, say

$$
\Gamma_{i}=\xi_{i j} \partial_{x_{j}}, \quad i=1, n-1
$$

then JLM is given by $M=\Delta^{-1}$, provided that $\Delta \neq 0$, where

$$
\Delta=\operatorname{det}\left[\begin{array}{ccc}
a_{1} & \cdots & a_{n} \\
\xi_{1,1} & & \xi_{1, n} \\
\vdots & & \vdots \\
\xi_{n-1,1} & \cdots & \xi_{n-1, n}
\end{array}\right]
$$

Corollary: if $\exists M=$ const, then Δ is a first integral.

How many Lagrangians does one know?

There is a link between a Jacobi Last Multiplier M and a Lagrangian L [Jacobi, 1842-45], [also in Whittaker, 1904].
Jacobi's Lectures on Dynamics (1884) are available in English: tr. by K. Balagangadharan, ed. by Biswarup Banerjee, Hindustan Book Agency (2009), available through AMS

For a second-order ODE the link is:

$$
\begin{equation*}
\frac{\partial^{2} L}{\partial \dot{q}^{2}}=M \tag{1}
\end{equation*}
$$

Consequently a knowledge of the multipliers of a system enables one to construct a number of Lagrangians of that system.

How many??

How many Lagrangians does one know?

There is a link between a Jacobi Last Multiplier M and a Lagrangian L [Jacobi, 1842-45], [also in Whittaker, 1904].
Jacobi's Lectures on Dynamics (1884) are available in English:
tr. by K. Balagangadharan, ed. by Biswarup Banerjee,
Hindustan Book Agency (2009), available through AMS
For a second-order ODE the link is:

$$
\begin{equation*}
\frac{\partial^{2} L}{\partial \dot{q}^{2}}=M \tag{1}
\end{equation*}
$$

Consequently a knowledge of the multipliers of a system enables one to construct a number of Lagrangians of that system.

How many??

N.B.: For a single ODE of order $2 n$ the link is $M^{1 / n}=\frac{\partial^{2} L}{\partial\left(q^{(n)}\right)^{2}}$ (Jacobi, J. Reine Angew. Math. 29 (1845) p.364)

A very simple example

Let us consider the one-dimensional free particle $\ddot{x}=0$, i.e.:

$$
\begin{aligned}
& \dot{x_{1}}=x_{2} \\
& \dot{x_{2}}=0
\end{aligned}
$$

Lie symmetry algebra $s l(3, \mathbb{R})$:

$$
\begin{array}{r}
X_{1}=x t \partial_{t}+x^{2} \partial_{x}, \quad X_{2}=x \partial_{t}, \quad X_{3}=t^{2} \partial_{t}+x t \partial_{x}, \quad X_{4}=x \partial_{x} \\
\\
X_{5}=t \partial_{t}, \quad X_{6}=\partial_{t}, \quad X_{7}=t \partial_{x}, \quad X_{8}=\partial_{x}
\end{array}
$$

A very simple example

Let us consider the one-dimensional free particle $\ddot{x}=0$, i.e.:

$$
\begin{aligned}
& \dot{x_{1}}=x_{2} \\
& \dot{x_{2}}=0
\end{aligned}
$$

Lie symmetry algebra $s l(3, \mathbb{R})$:

$$
\begin{array}{r}
X_{1}=x t \partial_{t}+x^{2} \partial_{x}, \quad X_{2}=x \partial_{t}, \quad X_{3}=t^{2} \partial_{t}+x t \partial_{x}, \quad X_{4}=x \partial_{x} \\
\\
X_{5}=t \partial_{t}, \quad X_{6}=\partial_{t}, \quad X_{7}=t \partial_{x}, \quad X_{8}=\partial_{x}
\end{array}
$$

$J L M_{i j}=1 / \Delta_{i j}, X_{i}$ and X_{j}

A very simple example

Let us consider the one-dimensional free particle $\ddot{x}=0$, i.e.:

$$
\begin{aligned}
& \dot{x_{1}}=x_{2} \\
& \dot{x_{2}}=0
\end{aligned}
$$

Lie symmetry algebra $s l(3, \mathbb{R})$:

$$
\begin{array}{r}
X_{1}=x t \partial_{t}+x^{2} \partial_{x}, \quad X_{2}=x \partial_{t}, \quad X_{3}=t^{2} \partial_{t}+x t \partial_{x}, \quad X_{4}=x \partial_{x} \\
\\
X_{5}=t \partial_{t}, \quad X_{6}=\partial_{t}, \quad X_{7}=t \partial_{x}, \quad X_{8}=\partial_{x}
\end{array}
$$

$J L M_{i j}=1 / \Delta_{i j}, X_{i}$ and X_{j}
For example $J L M_{48}=-1 / \dot{X}$ by means of X_{4} and X_{8} such that:

$$
\Delta_{48}=\operatorname{det}\left[\begin{array}{ccc}
1 & x_{2} & 0 \\
0 & x_{1} & x_{2} \\
0 & 1 & 0
\end{array}\right]=-x_{2} \equiv-\dot{x}
$$

Ten Lagrangians

Ten different JLM and consequently as many Lagrangians:

$$
\begin{aligned}
& M_{13}=-\frac{1}{(t \dot{x}-x)^{3}} \Rightarrow L_{1,3}=-\frac{1}{2 t^{2}(t \dot{x}-x)}+\frac{\mathrm{d} g}{\mathrm{~d} t}(t, x) \\
& M_{15}=-\frac{1}{\dot{x}(t \dot{x}-x)^{2}} \Rightarrow L_{1,5}=\frac{\dot{x}}{x^{2}}(\log (t \dot{x}-x)-\log (\dot{x})) \\
& M_{16}=\frac{1}{\dot{x}^{2}(t \dot{x}-x)} \Rightarrow L_{1,6}=\left(\frac{t \dot{x}}{x^{2}}-\frac{1}{x}\right)(\log (\dot{x})-\log (t \dot{x}-x)) \\
& M_{17}=-\frac{1}{(t \dot{x}-x)^{2}} \Rightarrow L_{1,7}=-\frac{1}{t^{2}} \log (t \dot{x}-x) \\
& M_{18}=\frac{1}{\dot{x}(t \dot{x}-x)} \Rightarrow \quad L_{1,8}=-\frac{\dot{x}}{x} \log (\dot{x})-\left(\frac{1}{t}-\frac{\dot{x}}{x}\right) \log (t \dot{x}-x) \\
&+\frac{1}{t}(1+\log (x))
\end{aligned}
$$

$$
\begin{aligned}
M_{62}=\frac{1}{\dot{x}^{3}} & \Rightarrow L_{6,2}=\frac{1}{2 \dot{x}} \\
M_{28}=\frac{1}{\dot{x}^{2}} & \Rightarrow L_{2,8}=-\log (\dot{x}) \\
M_{38}=\frac{1}{t \dot{x}-x} & \Rightarrow L_{3,8}=\left(\frac{\dot{x}}{t}-\frac{x}{t^{2}}\right)(\log (t \dot{x}-x)-1) \\
M_{48}=-\frac{1}{\dot{x}} & \Rightarrow L_{4,8}=\dot{x}(1-\log (\dot{x})) \\
M_{87}=1 & \Rightarrow
\end{aligned}
$$

$$
\begin{aligned}
M_{62}=\frac{1}{\dot{x}^{3}} & \Rightarrow L_{6,2}=\frac{1}{2 \dot{x}} \\
M_{28}=\frac{1}{\dot{x}^{2}} & \Rightarrow L_{2,8}=-\log (\dot{x}) \\
M_{38}=\frac{1}{t \dot{x}-x} & \Rightarrow L_{3,8}=\left(\frac{\dot{x}}{t}-\frac{x}{t^{2}}\right)(\log (t \dot{x}-x)-1) \\
M_{48}=-\frac{1}{\dot{x}} & \Rightarrow L_{4,8}=\dot{x}(1-\log (\dot{x})) \\
M_{87}=1 & \Rightarrow L_{8,7}=\frac{1}{2} \dot{x}^{2}
\end{aligned}
$$

FINALLY, THE TRUE LAGRANGIAN

Lagrangians for biological models

About 45 years ago a paper was published [Trubatch \& Franco, J. Theor. Biol. 48 (1974)] in which an explicit algorithm for constructing Lagrangians (L) of biological systems (many examples) was presented.

Lagrangians for biological models

About 45 years ago a paper was published [Trubatch \& Franco, J. Theor. Biol. 48 (1974)] in which an explicit algorithm for constructing Lagrangians (L) of biological systems (many examples) was presented.
8 years later an analogous paper (with fewer examples) was published [Paine, Bull. Math. Biol. 44 (1982)]: no ref. to T\&F.

Lagrangians for biological models

About 45 years ago a paper was published [Trubatch \& Franco, J. Theor. Biol. 48 (1974)] in which an explicit algorithm for constructing Lagrangians (L) of biological systems (many examples) was presented. 8 years later an analogous paper (with fewer examples) was published [Paine, Bull. Math. Biol. 44 (1982)]: no ref. to T\&F. Then 16 year later a third paper was published (with one example), [Fernández-Núñez, Int. J. Theor. Phys. 37 (1998)]: no ref. to either T\&Franco or P.

Lagrangians for biological models

About 45 years ago a paper was published [Trubatch \& Franco, J. Theor. Biol. 48 (1974)] in which an explicit algorithm for constructing Lagrangians (L) of biological systems (many examples) was presented. 8 years later an analogous paper (with fewer examples) was published [Paine, Bull. Math. Biol. 44 (1982)]: no ref. to T\&F. Then 16 year later a third paper was published (with one example), [Fernández-Núñez, Int. J. Theor. Phys. 37 (1998)]: no ref. to either T\&Franco or P. Those authors were all unaware of the 170 years old properties of the Jacobi Last Multiplier (JLM) that yield linear Lagrangians of systems of two first-order ODEs and nonlinear Lagrangian of any of the single second-order ODE that can be derived from them, and more:

Lagrangians for biological models

About 45 years ago a paper was published [Trubatch \& Franco, J. Theor. Biol. 48 (1974)] in which an explicit algorithm for constructing Lagrangians (L) of biological systems (many examples) was presented.
8 years later an analogous paper (with fewer examples) was published [Paine, Bull. Math. Biol. 44 (1982)]: no ref. to T\&F. Then 16 year later a third paper was published (with one example), [Fernández-Núñez, Int. J. Theor. Phys. 37 (1998)]: no ref. to either T\&Franco or P.
Those authors were all unaware of the 170 years old properties of the Jacobi Last Multiplier (JLM) that yield linear Lagrangians of systems of two first-order ODEs and nonlinear Lagrangian of any of the single second-order ODE that can be derived from them, and more:
For a single ODE of order $2 n$ the link is $J L M^{1 / n}=\frac{\partial^{2} L}{\partial\left(x^{(n)}\right)^{2}}$
[Jacobi, J. Reine Angew. Math. 29 (1845)]

Lagrangians for biological systems with JLM

Given the following system:

$$
\begin{align*}
& \dot{u}_{1}=\phi_{1}\left(t, u_{1}, u_{2}\right) \\
& \dot{u}_{2}=\phi_{2}\left(t, u_{1}, u_{2}\right) \tag{2}
\end{align*}
$$

It was proven in [MCN \& Tamizhmani, 2012] that if a Jacobi Last Multiplier M is determined for system (2) then its Lagrangian is:

$$
L=\dot{u}_{2} \int M \mathrm{~d} u_{1}-\dot{u}_{1} \int M \mathrm{~d} u_{2}+V\left(t, u_{1}, u_{2}\right)
$$

Lagrangians for biological systems with JLM

Given the following system:

$$
\begin{align*}
& \dot{u}_{1}=\phi_{1}\left(t, u_{1}, u_{2}\right) \\
& \dot{u}_{2}=\phi_{2}\left(t, u_{1}, u_{2}\right) \tag{2}
\end{align*}
$$

It was proven in [MCN \& Tamizhmani, 2012] that if a Jacobi Last Multiplier M is determined for system (2) then its Lagrangian is:

$$
L=\dot{u}_{2} \int M \mathrm{~d} u_{1}-\dot{u}_{1} \int M \mathrm{~d} u_{2}+V\left(t, u_{1}, u_{2}\right)
$$

If a Noether symmetry

$$
\begin{equation*}
\Gamma=\xi\left(t, u_{1}, u_{2}\right) \partial_{t}+\eta_{1}\left(t, u_{1}, u_{2}\right) \partial_{u_{1}}+\eta_{2}\left(t, u_{1}, u_{2}\right) \partial_{u_{2}} \tag{3}
\end{equation*}
$$

exists for the Lagrangian L then a first integral of system (2) is

$$
\begin{equation*}
-\xi L-\frac{\partial L}{\partial \dot{u}_{1}}\left(\eta_{1}-\xi \dot{u}_{1}\right)-\frac{\partial L}{\partial \dot{u}_{2}}\left(\eta_{2}-\xi \dot{u}_{2}\right)+G\left(t, u_{1}, u_{2}\right) . \tag{4}
\end{equation*}
$$

Gompertz model

$$
\begin{align*}
& \dot{w}_{1}=w_{1}\left(A \log \left(\frac{w_{1}}{m_{1}}\right)+B w_{2}\right) \\
& \dot{w}_{2}=w_{2}\left(a \log \left(\frac{w_{2}}{m_{2}}\right)+b w_{1}\right) . \tag{5}
\end{align*}
$$

In order to simplify system (5) we introduce the change of variables

$$
\begin{equation*}
w_{1}=m_{1} \exp \left(r_{1}\right), \quad w_{2}=m_{2} \exp \left(r_{2}\right) \tag{6}
\end{equation*}
$$

and then system (5) becomes

$$
\begin{align*}
\dot{r}_{1} & =m_{2} B \exp \left(r_{2}\right)+A r_{1} \\
\dot{r}_{2} & =m_{1} b \exp \left(r_{1}\right)+a r_{2} . \tag{7}
\end{align*}
$$

It is easy to derive a Jacobi Last Multiplier for this system, i.e.

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \log \left(M_{[r]}\right)=-(a+A) \Longrightarrow M_{[r]}=\exp [-(a+A) t] \tag{8}
\end{equation*}
$$

We can transform system (7) into an equivalent second-order ODE by eliminating, say, r_{2}. In fact from the second equation in (7) one gets

$$
\begin{equation*}
r_{2}=\log \left(\frac{\dot{r}_{1}-A r_{1}}{B m_{2}}\right) \tag{9}
\end{equation*}
$$

and the equivalent second-order equation in r_{2} is
$\ddot{r}_{1}=\left(b m_{1} \exp \left(r_{1}\right)+a \log \left(\frac{\dot{r}_{1}-A r_{1}}{B m_{2}}\right)\right)\left(\dot{r}_{1}-A r_{1}\right)+A \dot{r}_{1}$.
A Jacobi Last Multiplier for this equation can be obtained by calculating the Jacobian of the transformation between $\left(r_{1}, r_{2}\right)$ and $\left(r_{1}, \dot{r}_{1}\right)$, i.e.

$$
\begin{equation*}
M_{1}=M_{[r]} \frac{\partial\left(r_{1}, r_{2}\right)}{\partial\left(r_{1}, \dot{r}_{1}\right)}=\exp [-(a+A) t] \frac{1}{\dot{r}_{1}-A r_{1}} \tag{10}
\end{equation*}
$$

Then a Lagrangian can be easily obtained by a double integration, i.e.

$$
\begin{aligned}
& L_{1}=\exp [-(a+A) t]\left(\left(\dot{r}_{1}-A r_{1}\right) \log \left(\dot{r}_{1}-A r_{1}\right)+m_{1} b \exp \left(r_{1}\right)\right. \\
&\left.-a r_{1} \log \left(B m_{2}\right)-a r_{1}\right)+\dot{F}\left(t, r_{1}\right)
\end{aligned}
$$

Vito Volterra's last paper

Calculus of Variations and the Logistic Curve, Human Biology, 1939
Vito Volterra (1860-1940) wrote "I have been able to show that the equations of the struggle for existence depend on a question of Calculus of Variations"

Vito Volterra's last paper

Calculus of Variations and the Logistic Curve, Human Biology, 1939
Vito Volterra (1860-1940) wrote "I have been able to show that the equations of the struggle for existence depend on a question of Calculus of Variations"
"In order to obtain this result, I have replaced the notion of population by that of quantity of life. In this manner I have also obtained some results by which dynamics is brought into relation to problems of the struggle for existence." The quantity of life X and the population N of a species are connected by the relation

$$
\begin{equation*}
N=\frac{\mathrm{d} X}{\mathrm{~d} t} \tag{11}
\end{equation*}
$$

Thus Volterra takes a system of first-order equations and transform it into a system of second-order equations.

Volterra-Verhulst-Pearl equation

One of the equations Volterra considered is the Verhulst-Pearl equation

$$
\begin{equation*}
\frac{\mathrm{d} N}{\mathrm{~d} t}=N(\varepsilon-\lambda N) \tag{12}
\end{equation*}
$$

that through (11) becomes

$$
\begin{equation*}
\frac{\mathrm{d}^{2} X}{\mathrm{~d} t^{2}}=\frac{\mathrm{d} X}{\mathrm{~d} t}\left(\varepsilon-\lambda \frac{\mathrm{d} X}{\mathrm{~d} t}\right) \tag{13}
\end{equation*}
$$

Volterra-Verhulst-Pearl equation

One of the equations Volterra considered is the Verhulst-Pearl equation

$$
\begin{equation*}
\frac{\mathrm{d} N}{\mathrm{~d} t}=N(\varepsilon-\lambda N) \tag{12}
\end{equation*}
$$

that through (11) becomes

$$
\begin{equation*}
\frac{\mathrm{d}^{2} X}{\mathrm{~d} t^{2}}=\frac{\mathrm{d} X}{\mathrm{~d} t}\left(\varepsilon-\lambda \frac{\mathrm{d} X}{\mathrm{~d} t}\right) \tag{13}
\end{equation*}
$$

Equation (13) admits an eight-dimensional Lie symmetry algebra generated by the following operators:
$\Gamma_{1}=\exp (\lambda X-\varepsilon t) \partial_{t}, \quad \Gamma_{2}=\exp (\lambda X)\left(\partial_{t}+\frac{\varepsilon}{\lambda} \partial_{X}\right)$,
$\Gamma_{3}=\exp (-\lambda X+\varepsilon t) \partial_{X}, \quad \Gamma_{4}=\exp (-\lambda X) \partial_{X}$,
$\Gamma_{5}=\exp (\varepsilon t)\left(\frac{\lambda}{\varepsilon} \partial_{t}+\partial_{X}\right), \Gamma_{6}=\partial_{X}, \Gamma_{7}=\exp (-\varepsilon t) \partial_{t}, \Gamma_{8}=\partial_{t}$.
Therefore the equation is linearizable
$y=\exp (-\varepsilon t), u=\frac{1}{\lambda} \exp (\lambda X-\varepsilon t) \Rightarrow \frac{\mathrm{d}^{2} u}{\mathrm{~d} y^{2}}=0$

$$
J L M=\frac{\partial^{2} L}{\partial \dot{X}^{2}} \Leftrightarrow \triangle
$$

Ten Lagrangians

Ten Lagrangians

$$
\begin{aligned}
& J L M=\frac{\partial^{2} L}{\partial \dot{X}^{2}} \Leftrightarrow \\
& \operatorname{Lag}_{14}=-\exp (\varepsilon t)\left(\frac{1}{\lambda} \log \left(\frac{\mathrm{~d} X}{\mathrm{~d} t}\right)+X\right), \\
& \operatorname{Lag}_{15}=\exp (-\lambda X)\left(\frac{1}{\varepsilon} \frac{\mathrm{~d} X}{\mathrm{~d} t} \log \left(\frac{\mathrm{~d} X}{\mathrm{~d} t}\right)+\frac{1}{\varepsilon} \log \left(\lambda \frac{\mathrm{~d} X}{\mathrm{~d} t}-\varepsilon\right) \frac{\mathrm{d} X}{\mathrm{~d} t}+\frac{1}{\lambda}\right), \\
& \operatorname{Lag}_{17}=-\frac{1}{2 \lambda \frac{\mathrm{~d} X}{\mathrm{~d} t}} \exp (2 \varepsilon t-\lambda X), \\
& \operatorname{Lag}_{18}=\frac{1}{\varepsilon^{2}} \exp (\varepsilon t-\lambda X)\left(\lambda \frac{\mathrm{d} X}{\mathrm{~d} t}-\varepsilon\right)\left(\log \left(\frac{\mathrm{d} X}{\mathrm{~d} t}\right)-\varepsilon \log \left(\lambda \frac{\mathrm{d} X}{\mathrm{~d} t}-\varepsilon\right)\right), \\
& \operatorname{Lag}_{23}=-\frac{1}{\lambda} \exp (-\varepsilon X)\left(\log \left(\varepsilon-\lambda \frac{\mathrm{d} X}{\mathrm{~d} t}\right)+\lambda X\right), \\
& \operatorname{Lag}_{25}=\frac{\varepsilon \exp (-\varepsilon t-\lambda X)}{2 \lambda\left(\varepsilon t-\lambda \frac{\mathrm{d} X}{\mathrm{dt}}\right)}, \\
& \operatorname{Lag}_{34}=-\frac{1}{2 \varepsilon} \exp (-\varepsilon t+2 \lambda X)\left(\frac{\mathrm{d} X}{\mathrm{~d} t}\right)^{2}, \\
& \operatorname{Lag}_{36}=\frac{1}{\lambda^{2}} \exp (-\varepsilon t+\lambda X)\left(\left(\lambda \frac{\mathrm{d} X}{\mathrm{~d} t}-\varepsilon\right) \log \left(\varepsilon-\lambda \frac{\mathrm{d} X}{\mathrm{~d} t}\right)-\lambda \frac{\mathrm{d} X}{\mathrm{~d} t}\right), \\
& \operatorname{Lag}_{37}=\frac{1}{\varepsilon} \exp (\lambda X)\left(\frac{\mathrm{d} X}{\mathrm{~d} t} \log \left(\frac{\mathrm{~d} X}{\mathrm{~d} t}\right)-\frac{\mathrm{d} X}{\mathrm{~d} t}+\frac{\varepsilon}{\lambda}\right), \\
& \operatorname{Lag}_{68}=\frac{1}{\varepsilon} \frac{\mathrm{~d} X}{\mathrm{~d} t} \log \left(\frac{\mathrm{~d} X}{\mathrm{~d} t}\right)+\frac{1}{\varepsilon \lambda}\left(\varepsilon-\lambda \frac{\mathrm{d} X}{\mathrm{~d} t}\right) \log \left(\varepsilon-\lambda \frac{\mathrm{d} X}{\mathrm{~d} t}\right)+X
\end{aligned}
$$

Ten Lagrangians

$$
\begin{aligned}
& J L M=\frac{\partial^{2} L}{\partial \dot{X}^{2}} \Leftrightarrow \\
& \operatorname{Lag}_{14}=-\exp (\varepsilon t)\left(\frac{1}{\lambda} \log \left(\frac{\mathrm{~d} X}{\mathrm{~d} t}\right)+X\right), \\
& \operatorname{Lag}_{15}=\exp (-\lambda X)\left(\frac{1}{\varepsilon} \frac{\mathrm{~d} X}{\mathrm{~d} t} \log \left(\frac{\mathrm{~d} X}{\mathrm{~d} t}\right)+\frac{1}{\varepsilon} \log \left(\lambda \frac{\mathrm{~d} X}{\mathrm{~d} t}-\varepsilon\right) \frac{\mathrm{d} X}{\mathrm{~d} t}+\frac{1}{\lambda}\right), \\
& \operatorname{Lag}_{17}=-\frac{1}{2 \lambda \frac{\mathrm{~d} X}{\mathrm{~d} t}} \exp (2 \varepsilon t-\lambda X), \\
& \operatorname{Lag}_{18}=\frac{1}{\varepsilon^{2}} \exp (\varepsilon t-\lambda X)\left(\lambda \frac{\mathrm{d} X}{\mathrm{~d} t}-\varepsilon\right)\left(\log \left(\frac{\mathrm{d} X}{\mathrm{~d} t}\right)-\varepsilon \log \left(\lambda \frac{\mathrm{d} X}{\mathrm{~d} t}-\varepsilon\right)\right), \\
& \operatorname{Lag}_{23}=-\frac{1}{\lambda} \exp (-\varepsilon X)\left(\log \left(\varepsilon-\lambda \frac{\mathrm{d} X}{\mathrm{~d} t}\right)+\lambda X\right), \\
& \operatorname{Lag}_{25}=\frac{\varepsilon \exp (-\varepsilon t-\lambda X)}{2 \lambda\left(\varepsilon t-\lambda \frac{\mathrm{d} X}{\mathrm{dt}}\right)}, \\
& \operatorname{Lag}_{34}=-\frac{1}{2 \varepsilon} \exp (-\varepsilon t+2 \lambda X)\left(\frac{\mathrm{d} X}{\mathrm{~d} t}\right)^{2}, \\
& \operatorname{Lag}_{36}=\frac{1}{\lambda^{2}} \exp (-\varepsilon t+\lambda X)\left(\left(\lambda \frac{\mathrm{d} X}{\mathrm{~d} t}-\varepsilon\right) \log \left(\varepsilon-\lambda \frac{\mathrm{d} X}{\mathrm{~d} t}\right)-\lambda \frac{\mathrm{d} X}{\mathrm{~d} t}\right), \\
& \operatorname{Lag}_{37}=\frac{1}{\varepsilon} \exp (\lambda X)\left(\frac{\mathrm{d} X}{\mathrm{~d} t} \log \left(\frac{\mathrm{~d} X}{\mathrm{~d} t}\right)-\frac{\mathrm{d} X}{\mathrm{~d} t}+\frac{\varepsilon}{\lambda}\right), \\
& \operatorname{Lag}_{68}=\frac{1}{\varepsilon} \frac{\mathrm{~d} X}{\mathrm{~d} t} \log \left(\frac{\mathrm{~d} X}{\mathrm{~d} t}\right)+\frac{1}{\varepsilon \lambda}\left(\varepsilon-\lambda \frac{\mathrm{d} X}{\mathrm{~d} t}\right) \log \left(\varepsilon-\lambda \frac{\mathrm{d} X}{\mathrm{~d} t}\right)+X
\end{aligned}
$$

$\operatorname{Lag}_{17}, \operatorname{Lag}_{25}, \operatorname{Lag}_{34}$ admit five Noether symmetries
Lag68 (Volterra's Lagrangian) admits two Noether symmetries only.

Conservation laws

For example the Lagrangian Lag_{34} yields the following five Noether symmetries and corresponding first integrals of equation (13)

$$
\begin{aligned}
\Gamma_{3} & \Longrightarrow I n t_{3}=\exp (\lambda X)\left(-\varepsilon+\lambda \frac{\mathrm{d} X}{\mathrm{~d} t}\right) \\
\Gamma_{4} & \Longrightarrow I n t_{4}=\exp (-\varepsilon t+\lambda X) \frac{\mathrm{d} X}{\mathrm{~d} t}, \\
\Gamma_{5} & \Longrightarrow I n t_{5}=\exp (2 \lambda X)\left(\varepsilon-\lambda \frac{\mathrm{d} X}{\mathrm{~d} t}\right)^{2}, \\
\Gamma_{6}+2 \frac{\lambda}{\varepsilon} \Gamma_{8} & \Longrightarrow I n t_{6}=\exp (-\varepsilon t+2 \lambda X) \frac{\mathrm{d} X}{\mathrm{~d} t}\left(\varepsilon-\lambda \frac{\mathrm{d} X}{\mathrm{~d} t}\right), \\
\Gamma_{7} & \Longrightarrow I n t_{7}=\exp (-2 \varepsilon t+2 \lambda X)\left(\frac{\mathrm{d} X}{\mathrm{~d} t}\right)^{2} .
\end{aligned}
$$

[MCN and K.M.Tamizhmani, J. Nonlinear Math. Phys. 19 (2012)]

How do we (physically) eliminate 9 out of 10??

How do we (physically) eliminate 9 out of 10??

- They differ by the number of Noether symmetries that they admit.

How do we (physically) eliminate 9 out of 10??

- They differ by the number of Noether symmetries that they admit.
- The physical Lagrangian admits the maximum number of Noether symmetries, i.e. FIVE.

How do we (physically) eliminate 9 out of 10??

- They differ by the num admit.
- The physical Lagrangia Noether symmetries, i.f

EMMY NOETHER

How do we (physically) eliminate 9 out of 10??

ERWIN SCHRÖDINGER

ey

EMMY NOETHER

